Extensions 1→N→G→Q→1 with N=C22⋊SD16 and Q=C2

Direct product G=N×Q with N=C22⋊SD16 and Q=C2
dρLabelID
C2×C22⋊SD1632C2xC2^2:SD16128,1729

Semidirect products G=N:Q with N=C22⋊SD16 and Q=C2
extensionφ:Q→Out NdρLabelID
C22⋊SD161C2 = C24.177D4φ: C2/C1C2 ⊆ Out C22⋊SD1616C2^2:SD16:1C2128,1735
C22⋊SD162C2 = C24.106D4φ: C2/C1C2 ⊆ Out C22⋊SD1632C2^2:SD16:2C2128,1739
C22⋊SD163C2 = D4.(C2×D4)φ: C2/C1C2 ⊆ Out C22⋊SD1632C2^2:SD16:3C2128,1741
C22⋊SD164C2 = (C2×D4)⋊21D4φ: C2/C1C2 ⊆ Out C22⋊SD1632C2^2:SD16:4C2128,1744
C22⋊SD165C2 = C42.232D4φ: C2/C1C2 ⊆ Out C22⋊SD1632C2^2:SD16:5C2128,1846
C22⋊SD166C2 = C42.352C23φ: C2/C1C2 ⊆ Out C22⋊SD1632C2^2:SD16:6C2128,1850
C22⋊SD167C2 = C24.126D4φ: C2/C1C2 ⊆ Out C22⋊SD1632C2^2:SD16:7C2128,1925
C22⋊SD168C2 = C24.127D4φ: C2/C1C2 ⊆ Out C22⋊SD1632C2^2:SD16:8C2128,1926
C22⋊SD169C2 = C4.2+ 1+4φ: C2/C1C2 ⊆ Out C22⋊SD1632C2^2:SD16:9C2128,1930
C22⋊SD1610C2 = C4.152+ 1+4φ: C2/C1C2 ⊆ Out C22⋊SD1632C2^2:SD16:10C2128,1932
C22⋊SD1611C2 = C42.275D4φ: C2/C1C2 ⊆ Out C22⋊SD1632C2^2:SD16:11C2128,1949
C22⋊SD1612C2 = C42.408C23φ: C2/C1C2 ⊆ Out C22⋊SD1632C2^2:SD16:12C2128,1954
C22⋊SD1613C2 = C42.410C23φ: C2/C1C2 ⊆ Out C22⋊SD1632C2^2:SD16:13C2128,1956
C22⋊SD1614C2 = D89D4φ: C2/C1C2 ⊆ Out C22⋊SD1632C2^2:SD16:14C2128,1996
C22⋊SD1615C2 = SD16⋊D4φ: C2/C1C2 ⊆ Out C22⋊SD1632C2^2:SD16:15C2128,1997
C22⋊SD1616C2 = SD166D4φ: C2/C1C2 ⊆ Out C22⋊SD1632C2^2:SD16:16C2128,1998
C22⋊SD1617C2 = D810D4φ: C2/C1C2 ⊆ Out C22⋊SD1632C2^2:SD16:17C2128,1999
C22⋊SD1618C2 = D84D4φ: C2/C1C2 ⊆ Out C22⋊SD1632C2^2:SD16:18C2128,2004
C22⋊SD1619C2 = SD162D4φ: C2/C1C2 ⊆ Out C22⋊SD1632C2^2:SD16:19C2128,2007
C22⋊SD1620C2 = C42.45C23φ: C2/C1C2 ⊆ Out C22⋊SD1632C2^2:SD16:20C2128,2042
C22⋊SD1621C2 = C42.46C23φ: C2/C1C2 ⊆ Out C22⋊SD1632C2^2:SD16:21C2128,2043
C22⋊SD1622C2 = C42.49C23φ: C2/C1C2 ⊆ Out C22⋊SD1632C2^2:SD16:22C2128,2046
C22⋊SD1623C2 = C42.472C23φ: C2/C1C2 ⊆ Out C22⋊SD1632C2^2:SD16:23C2128,2055
C22⋊SD1624C2 = C42.473C23φ: C2/C1C2 ⊆ Out C22⋊SD1632C2^2:SD16:24C2128,2056
C22⋊SD1625C2 = C23⋊SD16φ: C2/C1C2 ⊆ Out C22⋊SD1616C2^2:SD16:25C2128,328
C22⋊SD1626C2 = C4⋊C4.D4φ: C2/C1C2 ⊆ Out C22⋊SD1632C2^2:SD16:26C2128,329
C22⋊SD1627C2 = C24.9D4φ: C2/C1C2 ⊆ Out C22⋊SD1616C2^2:SD16:27C2128,332
C22⋊SD1628C2 = C234SD16φ: C2/C1C2 ⊆ Out C22⋊SD1632C2^2:SD16:28C2128,1919
C22⋊SD1629C2 = C24.121D4φ: C2/C1C2 ⊆ Out C22⋊SD1632C2^2:SD16:29C2128,1920
C22⋊SD1630C2 = C42.266D4φ: C2/C1C2 ⊆ Out C22⋊SD1632C2^2:SD16:30C2128,1940
C22⋊SD1631C2 = C42.269D4φ: C2/C1C2 ⊆ Out C22⋊SD1632C2^2:SD16:31C2128,1943
C22⋊SD1632C2 = D812D4φ: C2/C1C2 ⊆ Out C22⋊SD1632C2^2:SD16:32C2128,2012
C22⋊SD1633C2 = D4×SD16φ: C2/C1C2 ⊆ Out C22⋊SD1632C2^2:SD16:33C2128,2013
C22⋊SD1634C2 = D47SD16φ: C2/C1C2 ⊆ Out C22⋊SD1632C2^2:SD16:34C2128,2027
C22⋊SD1635C2 = C42.461C23φ: C2/C1C2 ⊆ Out C22⋊SD1632C2^2:SD16:35C2128,2028
C22⋊SD1636C2 = C24.103D4φ: trivial image32C2^2:SD16:36C2128,1734
C22⋊SD1637C2 = C42.225D4φ: trivial image32C2^2:SD16:37C2128,1837

Non-split extensions G=N.Q with N=C22⋊SD16 and Q=C2
extensionφ:Q→Out NdρLabelID
C22⋊SD16.1C2 = C42.228D4φ: C2/C1C2 ⊆ Out C22⋊SD1632C2^2:SD16.1C2128,1842
C22⋊SD16.2C2 = C42.357C23φ: C2/C1C2 ⊆ Out C22⋊SD1632C2^2:SD16.2C2128,1855
C22⋊SD16.3C2 = C42.273D4φ: C2/C1C2 ⊆ Out C22⋊SD1632C2^2:SD16.3C2128,1947
C22⋊SD16.4C2 = (C2×C4)⋊SD16φ: C2/C1C2 ⊆ Out C22⋊SD1632C2^2:SD16.4C2128,331
C22⋊SD16.5C2 = C42.222D4φ: trivial image32C2^2:SD16.5C2128,1833

׿
×
𝔽