Extensions 1→N→G→Q→1 with N=C22:SD16 and Q=C2

Direct product G=NxQ with N=C22:SD16 and Q=C2
dρLabelID
C2xC22:SD1632C2xC2^2:SD16128,1729

Semidirect products G=N:Q with N=C22:SD16 and Q=C2
extensionφ:Q→Out NdρLabelID
C22:SD16:1C2 = C24.177D4φ: C2/C1C2 ⊆ Out C22:SD1616C2^2:SD16:1C2128,1735
C22:SD16:2C2 = C24.106D4φ: C2/C1C2 ⊆ Out C22:SD1632C2^2:SD16:2C2128,1739
C22:SD16:3C2 = D4.(C2xD4)φ: C2/C1C2 ⊆ Out C22:SD1632C2^2:SD16:3C2128,1741
C22:SD16:4C2 = (C2xD4):21D4φ: C2/C1C2 ⊆ Out C22:SD1632C2^2:SD16:4C2128,1744
C22:SD16:5C2 = C42.232D4φ: C2/C1C2 ⊆ Out C22:SD1632C2^2:SD16:5C2128,1846
C22:SD16:6C2 = C42.352C23φ: C2/C1C2 ⊆ Out C22:SD1632C2^2:SD16:6C2128,1850
C22:SD16:7C2 = C24.126D4φ: C2/C1C2 ⊆ Out C22:SD1632C2^2:SD16:7C2128,1925
C22:SD16:8C2 = C24.127D4φ: C2/C1C2 ⊆ Out C22:SD1632C2^2:SD16:8C2128,1926
C22:SD16:9C2 = C4.2+ 1+4φ: C2/C1C2 ⊆ Out C22:SD1632C2^2:SD16:9C2128,1930
C22:SD16:10C2 = C4.152+ 1+4φ: C2/C1C2 ⊆ Out C22:SD1632C2^2:SD16:10C2128,1932
C22:SD16:11C2 = C42.275D4φ: C2/C1C2 ⊆ Out C22:SD1632C2^2:SD16:11C2128,1949
C22:SD16:12C2 = C42.408C23φ: C2/C1C2 ⊆ Out C22:SD1632C2^2:SD16:12C2128,1954
C22:SD16:13C2 = C42.410C23φ: C2/C1C2 ⊆ Out C22:SD1632C2^2:SD16:13C2128,1956
C22:SD16:14C2 = D8:9D4φ: C2/C1C2 ⊆ Out C22:SD1632C2^2:SD16:14C2128,1996
C22:SD16:15C2 = SD16:D4φ: C2/C1C2 ⊆ Out C22:SD1632C2^2:SD16:15C2128,1997
C22:SD16:16C2 = SD16:6D4φ: C2/C1C2 ⊆ Out C22:SD1632C2^2:SD16:16C2128,1998
C22:SD16:17C2 = D8:10D4φ: C2/C1C2 ⊆ Out C22:SD1632C2^2:SD16:17C2128,1999
C22:SD16:18C2 = D8:4D4φ: C2/C1C2 ⊆ Out C22:SD1632C2^2:SD16:18C2128,2004
C22:SD16:19C2 = SD16:2D4φ: C2/C1C2 ⊆ Out C22:SD1632C2^2:SD16:19C2128,2007
C22:SD16:20C2 = C42.45C23φ: C2/C1C2 ⊆ Out C22:SD1632C2^2:SD16:20C2128,2042
C22:SD16:21C2 = C42.46C23φ: C2/C1C2 ⊆ Out C22:SD1632C2^2:SD16:21C2128,2043
C22:SD16:22C2 = C42.49C23φ: C2/C1C2 ⊆ Out C22:SD1632C2^2:SD16:22C2128,2046
C22:SD16:23C2 = C42.472C23φ: C2/C1C2 ⊆ Out C22:SD1632C2^2:SD16:23C2128,2055
C22:SD16:24C2 = C42.473C23φ: C2/C1C2 ⊆ Out C22:SD1632C2^2:SD16:24C2128,2056
C22:SD16:25C2 = C23:SD16φ: C2/C1C2 ⊆ Out C22:SD1616C2^2:SD16:25C2128,328
C22:SD16:26C2 = C4:C4.D4φ: C2/C1C2 ⊆ Out C22:SD1632C2^2:SD16:26C2128,329
C22:SD16:27C2 = C24.9D4φ: C2/C1C2 ⊆ Out C22:SD1616C2^2:SD16:27C2128,332
C22:SD16:28C2 = C23:4SD16φ: C2/C1C2 ⊆ Out C22:SD1632C2^2:SD16:28C2128,1919
C22:SD16:29C2 = C24.121D4φ: C2/C1C2 ⊆ Out C22:SD1632C2^2:SD16:29C2128,1920
C22:SD16:30C2 = C42.266D4φ: C2/C1C2 ⊆ Out C22:SD1632C2^2:SD16:30C2128,1940
C22:SD16:31C2 = C42.269D4φ: C2/C1C2 ⊆ Out C22:SD1632C2^2:SD16:31C2128,1943
C22:SD16:32C2 = D8:12D4φ: C2/C1C2 ⊆ Out C22:SD1632C2^2:SD16:32C2128,2012
C22:SD16:33C2 = D4xSD16φ: C2/C1C2 ⊆ Out C22:SD1632C2^2:SD16:33C2128,2013
C22:SD16:34C2 = D4:7SD16φ: C2/C1C2 ⊆ Out C22:SD1632C2^2:SD16:34C2128,2027
C22:SD16:35C2 = C42.461C23φ: C2/C1C2 ⊆ Out C22:SD1632C2^2:SD16:35C2128,2028
C22:SD16:36C2 = C24.103D4φ: trivial image32C2^2:SD16:36C2128,1734
C22:SD16:37C2 = C42.225D4φ: trivial image32C2^2:SD16:37C2128,1837

Non-split extensions G=N.Q with N=C22:SD16 and Q=C2
extensionφ:Q→Out NdρLabelID
C22:SD16.1C2 = C42.228D4φ: C2/C1C2 ⊆ Out C22:SD1632C2^2:SD16.1C2128,1842
C22:SD16.2C2 = C42.357C23φ: C2/C1C2 ⊆ Out C22:SD1632C2^2:SD16.2C2128,1855
C22:SD16.3C2 = C42.273D4φ: C2/C1C2 ⊆ Out C22:SD1632C2^2:SD16.3C2128,1947
C22:SD16.4C2 = (C2xC4):SD16φ: C2/C1C2 ⊆ Out C22:SD1632C2^2:SD16.4C2128,331
C22:SD16.5C2 = C42.222D4φ: trivial image32C2^2:SD16.5C2128,1833

׿
x
:
Z
F
o
wr
Q
<